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Abstract 

The fixed points for an arbitrary proper Poinear6 transformation are found by exploiting 
the homomorphism between the Lorentz group and SL(2, C). 

Recently there has been considerable interest in determining fixed points 
for various physical situations (Atkinson, 1968a, 1968b, 1969, 1970; 
Lovelace, 1967; Kupsch, 1969; Warnock, 1969). In line with this work, 
we have determined the fixed points for an arbitrary proper finite Poincar6 
transformation. Our results represent a n  extension of the work by Synge 
(1971) in which he gives an existence proof for fixed points for an arbitrary 
infinitesimal Poincar6 transformation. 

Rather than work with the 4 • 4 matrices of the Lorentz group, we 
exploit the two to one homomorphism between SL(2, C), the group of 
2 x 2 complex matrices with determinant unity, and the Lorentz group. 
Thus we benefit from the considerable simplification that accrues from 
using only 2 • 2 matrices. The connection between these two groups is as 
follows (Joos, 1962; Waerden, 1932): If  x is any four-vector, there corre- 
sponds to it a 2 x 2 hermitian matrix 

X =  [Xo + x 3  x l - - i x2]  
Lxl + ix2 Xo - xa _1 (1) 

such that 
det X = x 2 (2) 

and that each proper Lorentz transformation 

x .  ~ x . '  = A.v xv (3) 

corresponds to a transformation 

A* XA = X' ,  detA = 1 (4) 
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where A is a 2 • 2 unimodular matrix which is unique up to its sign. A 
simple derivation of the explicit formulae expressing A in terms of A and 
vice versa is given in the Appendix. 

In the 2 • 2 notation a Poincar6 transformation 
t xu ---> xr = A~v Xv + tu 

corresponds to the transformation 

A t XA + T = X', T* = T 

(5) 

(6) 

The fixed point condition is clearly obtained by setting X '  = X in (6). Let 
us exclude the trivial case A = • for which every point is fixed if T = 0 
and there are no fixed points if T # 0. We then have the following theorem: 

Theorem: Let 
A* XA + T = X (7) 

be the fixed point equation for the Poincar6 group in SL(2, C) notation. 
Let a = trA. Then the solutions of equation (7) are as follows: 

a = a*: There is a unique solution 

X Q - Q *  a * ~ '  Q = T(A - a) (8) 

a = a*, Q # Q*: There is no solution. 
a = a*, Q = Q*: Solutions exist, but are not unique. They are of the form 

,1-~_~_ (BQ + QB*) + i(B* W -  WB) (9) X =  

where Wis any hermitian matrix and 

a 
B = A - ~ ,  2kZ=trB*B (10) 

Here (BQ + QB*)/4k 2 is a particular solution of (7), and i(B* W -  WB) 
is a solution of the homogeneous equation (T = 0). 

The space spanned by the homogeneous solution i(B* W - W B )  is 
two-dimensional and has signature (+, - ) ,  (0,-) ,  and ( - , - )  respectively for 
b 2 > 0, b 2 = 0 and b 2 < 0 where 

and the Lorentz transformation A is therefore a pure rotation, a pure 'null' 
transformation, and a pure boost in the three respective cases. 

The given translation T is orthogonal to the homogeneous space 
i(B* IV-- IVB) for all values o fb  2. The particular solution (BQ + QB*)/4k 2 
is linearly independent of the homogeneous space i(B t I V -  IVB) but in 
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general it is not orthogonal to it. However, for b 2 ~ 0 the orthogonal part 
can be projected out and turns out to be 

1 
X~ = ~b5 (Bt Q + QB)  (12) 

We turn now to the proof  of these statements. 

Proof:  The proof hinges on the fact that the characteristic equation for 
any 2 x 2 matrix M is quadratic and of the form 

M 2 = M t r M -  d e t M  (13) 

Applying this result to the matrix A, we obtain 

A 2 = a A - 4 ,  a = t r A  

and hence 

A -1 = a - A  

(14) 

(15) 

Then multiplying the fixed point equation (7) by A -1 on the right, we reduce 
it to 

A t  X + X A  - a X  = Q, Q = T ( A  - a) (16) 

which is linear in A. To solve this equation, the trick is to note that 
A t X +  X A  is self-adjoint whereas the other terms are not. Hence we can 
eliminate A ' X +  X A  by subtracting the adjoint equation from (16) with 
the result that 

(a* - a) X =- Q - Q* (17) 

This equation has the unique solution (8) for Xin  the case a # a*. Inserting 
this solution of (17) into the original fixed point equation (7) or (16) we 
see that it is identically satisfied. Thus we have the following result: For 
a # a* there is always a solution to the fixed point equation. It is unique 
and is given by (8). From (17) we also obtain the result that for a ~-a* 
there is no solution unless Q = Q*. 

Let us now assume that a = a* and Q = QL For real a, we see that (16) 
can be reduced to 

12 
B t X +  X B  = Q, B = A - ~ (18) 

Note that B is essentially the matrix A with its trace removed. We then 
note that all possible solutions of the fixed point equation can be expressed 
as the sum of one particular solution and all possible solutions of the 
homogeneous fixed point equation (i.e. the fixed point equation with T = 0). 

We now obtain a particular solution for a = a* and Qt = Q. For  this 



468 G.B. MAINLAND AND L. O'RAIFEARTAIGH 

purpose we first return to the characteristic equation (13) and by setting 
M = B and M = B + B t obtain the relations 

B 2 = - d e t B . ~  = ( ~ - 1 ) ~  =-bZ~ (19) 

and 

BBt  + B t B  = [ d e t B + d e t B t - d e t ( B +  Bt)]~ =-2k2~ (20) 

where we have used the fact that B and B + B* are traceless. Note that b z is 
not definite but that k 2 > 0. Second, we note that since 

T(A - a) = T(S - (a/Z)) 
we have 

Qt = Q r B t T =  TB <r B* Q = QB (21) 

Then using (20) (21) and (19) (21) respectively it is easy to verify that 

Xp = 4 ~  (BQ + QB*) (22) 

is a solution of the fixed point equation for all b 2, and that 

I 
X~ = ~ (B t Q + QB) (23) 

is a particular solution for b 2 # 0. Since the particular solutions (22) and 
(23) were not obtained deductively from the fixed point equation, the 
question arises in this case as to whether these solutions are unique. To 
answer this question we look for solutions Xn to the homogeneous fixed 
point equation which from (16) may be written in the form 

Bt  X~t+ X n B = O  (24) 

From this equation and (19) we see that 

Xn = i(B t W -  WB) (25) 

where Wis any hermitian 2 • 2 matrix, is a solution. We now wish to show 
that (25) is the most general solution of (24). In other words, we wish to 
show that (25) always has a solution for Wwhen XH satisfies (24). To show 
this we let C = - iB and rewrite (24) and (25) in the form 

c t w +  w c  = Jr,, (26) 
where 

C t Xn = Xn C (27) 

But these two equations are just the original equations we had for the 
non-homogeneous equation if we make the substitutions (B -+ C, W-+ X, 
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Xn -+ Q). Since we have displayed in (22) a particular solution for X(B, Q), 
a solution to (24) and (25) for W(C, Xn) is clearly 

1 - i  
W = ~ (CX~, + XI~ C*) = -g~ (BX~ - X,, B t) (28) 

One can, of course, also verify directly that W in (28) satisfies (25) when 
Xn satisfies (24). Thus (25) is in fact the most general solution to the homo- 
geneous fixed point equation and X = Xp + Xu is the most general solution 
to the original inhomogeneous fixed point equation. 

We conclude by giving a geometrical interpretation of the space 
i (B* W -  WB) of solutions to the homogeneous fixed point equation. For 
this purpose we consider the cases b2~ 0 and b 2=  0 separately. When 
b25 ~ 0, it is convenient to renormalise the traceless matrix B so that its 
determinant becomes unity. Thus we define 

i i (A a = 1 

R is then a Lorentz transformation with respect to which the Minkowski 
space of all hermitian matrices W has the decomposition 

w =  w+ + w_ (3o) 
where 

W+_ = �89 • R* WR) (31) 
since 

R t W+ R = 4- W+ (32) 

R has the property that it splits Minkowski space into an invariant and a 
non-invariant part. It is easy to see that the invariant part W+ contains the 
timelike vector 1 + R* R. This shows that R is a rotation, and hence that 
W+ is a two-dimensional space (spanned by 1 + RtR and the three- 
dimensional axis of rotation). On the other hand, the non-invariant part 
of Minkowski space simply changes sign under the action of R. This shows 
that R is actually a rotation through an angle ~, and that W_ is a spacelike 
two-dimensional space which is orthogonal to W+. From the property (32) 
which characterises the spaces W• and from the definitions of )~ and Xn 
and the condition (21) for T, we can easily see that 

X~,T~W+, X n ~ W - ,  for b2 > 0 
X,~, T ~ IV_, Xn ~ W+, for b 2 < 0 (33) 

The particular solution Xp in (22) is not an eigenstate of R and for this 
reason we prefer the particular solution X~ for b z r O. 

For b z= O, the geometrical interpretation is most easily obtained by 
noting that in this case the four hermitian matrices 

BB*, B 'B ,  Bt  + B, i (Bt--  B) (34) 
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are non-zero and linearly independent. Since detB = 0 and det(B t 4- B) = 
- - ( B  t -t- B )  2 = qz4k 2, the first two of these vectors are null and the last two 
are spacelike. 

It is then easy to see that the homogeneous solution XH, the given vector 
T and the special solution Xp lie in the following two-spaces 

XH ~ {i(B t - -  B), Bt  B) 

T~  {B t + B, BiB}  (35) 

Xp e {B t + B, BB t} 

where in each case the bracket denotes the two-space spanned by the vectors 
inside it. In fact, the first two results follow immediately from equations 
(24) and (21) respectively. The last result follows by noting from (22) that 
Xp satisfies the relation BXe = XpB t and since this is just the relation 
satisfied by T, except that B ~ - B  t, the space is the same as that for T 
except that B ~ B t. All of the spaces in (35) have signature (0,-) .  

Appendix 

The explicit formulae connecting A and A are 

A~v = �89 tr (A t a~ Aa~,) 

and 

where 

A =• D=Avuauq~ v 

(A1) 

(~)  

~r. = (~, r (A3) 

being the Pauli-matrices, and q is any 2 x 2 matrix such that D r 0. If  
possible ~/= 1. Note that since detA = 1, D # 0 implies detD # 0. 

Proof: From equation (1) we have 

X = x u a .  (A4) 

and hence from equations (2) and (3) we have 

A t or. A = A~ a~ (A5) 

To obtain (A1) from this equation, we multiply to the right by o'~ and take 
the trace. Since the cr u are trace-orthogonal we obtain 

tr A t ~r. Aa. = 2A,. (A6) 

which is clearly equivalent to (A1). 
To obtain the inverse formula (A2) the trick is to note that if for any 

matrix N we define 

4 4 
N ' =  E au.Na. = E anNa; 1, (A7) 

~=I .u=l 
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we have 

4 

crxN '=  ~ (cr~au)Na~ 1 
U=I 

4 
= Z (ax an) g ( a l  a.)  - i  ax 

/ . t= l  

4 

= Z (,o',) N(eaO -1 ~r,., 

4 

= ~ a ~ N a Z l a i  
1:=1 

N '  ffi 

= • •  (A8) 

It  follows that  N '  is a multiple of  the unit matrix, and hence that  

N '  = (2 tr N)  ~ (A9) 

We now multiply equation (A5) to the left by or.r/and sum over/~. F r o m  
(A9) we obtain 

2 tr (r/A*) A = Avu o-~ qcr v = D (A10) 

and hence using detA = 1 we have (A2), as required. 
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